AUDIO EXPERIENCE DESIGN

Imperial College London

On the Relevance of the Differences Between HRTF Measurement Setups for Machine Learning

Johan Pauwels, Lorenzo Picinali
May 5, 2023
ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing
Volume 
Issue 
Pages 
IEEE

As spatial audio is enjoying a surge in popularity, data-driven machine learning techniques that have been proven successful in other domains are increasingly used to process head-related transfer function measurements. However, these techniques require much data, whereas the existing datasets are ranging from tens to the low hundreds of datapoints. It therefore becomes attractive to combine multiple of these datasets, although they are measured under different conditions. In this paper, we first establish the common ground between a number of datasets, then we investigate potential pitfalls of mixing datasets. We perform a simple experiment to test the relevance of the remaining differences between datasets when applying machine learning techniques. Finally, we pinpoint the most relevant differences.

Visit Publication

Authors from the Audio Experience Design Team

Related Project

SONICOM

Related Tools & Devices

SONICOM HRTF Dataset

Here you will be able to download the first release of the SONICOM HRTF Dataset