Decoding sound source location from EEG: preliminary comparisons of spatial rendering and location
Spatial auditory acuity is contingent on the quality of spatial cues presented during listening. Electroencephalography (EEG) shows promise for finding neural markers of such acuity present in recorded neural activity, potentially mitigating common challenges with behavioural assessment (e.g., sound source localisation tasks). This study presents findings from three preliminary experiments which investigated neural response variations to auditory stimuli under different spatial listening conditions: free-field (loudspeaker-based), individual Head-Related Transfer-Functions (HRTF), and non-individual HRTFs. Three participants, each participating in one experiment, were exposed to auditory stimuli from various spatial locations while neural activity was recorded via EEG. The resultant neural responses underwent a decoding protocol to asses how decoding accuracy varied between stimuli locations over time. Decoding accuracy was highest for free-field auditory stimuli, with significant but lower decoding accuracy between left and right hemisphere locations for individual and non-individual HRTF stimuli. A latency in significant decoding accuracy was observed between listening conditions for locations dominated by spectral cues. Furthermore, findings suggest that decoding accuracy between free-field and non-individual HRTF stimuli may reflect behavioural front-back confusion rates.
Visit Publication